Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a* }}$ Peter

 Bubenitschek, ${ }^{\text {b }}$ Henning Hopf $^{\text {b }}$ and Harald Berger ${ }^{\text {b }}$${ }^{\text {a }}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.126$
Data-to-parameter ratio $=7.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

9-Methylene-10,10-bis(phenylethynyl)fluorene

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{18}$, the fluorene moiety displays normal dimensions, such as a narrow ring angle of 105.3 (3) ${ }^{\circ}$ at the 9 -position, the atom bearing the exocyclic double bond. The phenyl rings subtend angles of 14.8 (2) and $3.9(2)^{\circ}$ to the fluorene plane. Molecules are stacked parallel to the short c axis of 4.001 (1) \AA.

Comment

In our studies concerning the reactivity (Eshdat et al., 2002) and structural properties (Jones et al., 2004) of cross-conjugated enediynes we have prepared title hydrocarbon (3). In this communication, we report the structural parameters of (3) as determined by single-crystal X-ray crystallography.

Received 18 February 2005 Accepted 21 February 2005 Online 4 March 2005

The molecule of (3) is shown in Fig. 1. Bond lengths and angles (e.g. the necessarily distorted, formally $s p^{2}$ angles at C9) may be regarded as normal (Table 1). The fluorene moiety is essentially planar (r.m.s. deviation of 13 atoms is $0.04 \AA$), although a closer analysis reveals an interplanar angle of

Figure 1
The molecule of (3) in the crystal structure. Displacement ellipsoids are shown at the 50% probability level. H atom radii are arbitrary.

Figure 2
The crystal packing of (3), viewed parallel to the c axis. Radii are arbitrary. H atoms are omitted.
$4.4(2)^{\circ}$ between its two six-membered rings. The torsion angles about the $\mathrm{C} 9=\mathrm{C} 10$ bond are close to the ideal values of $0 / 180^{\circ}$. The C13-C18 and C13'-C18' phenyl rings subtend interplanar angles of 14.8 (2) and $3.9(2)^{\circ}$, respectively, to the overall fluorene plane.

The molecular packing (Fig. 2) shows no significant short contacts such as $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The mean plane through the molecule that constitutes the asymmetric unit makes an angle of 34° to the $a b$ plane. Molecules are necessarily stacked parallel to the short c axis.

Experimental

Compound (3) was prepared in 47% yield by the Peterson olefination of the diethynylketone (2) with 9-trimethylsilyl-fluorene, (1), using n-butyllithium as base in diethyl ether (Berger, 2005). All spectroscopic and analytical data agree with the structure given in the scheme. Recrystallization of (3) from chloroform/pentane afforded single crystals.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{30} \mathrm{H}_{18} \\
& M_{r}=378.44 \\
& \text { Orthorhombic, Pna } 2_{1} \\
& a=25.824(9) \AA \\
& b=18.944(8) \AA \\
& c=4.001(1) \AA \\
& V=1957.3(12) \AA^{3} \\
& Z=4 \\
& D_{x}=1.284 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection

Siemens R3 diffractometer
$h=-30 \rightarrow 30$
ω scans
6350 measured reflections
2004 independent reflections
1320 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=25.1^{\circ}$
$k=-22 \rightarrow 22$
$l=0 \rightarrow 4$
3 standard reflections every 147 reflections intensity decay: 0%

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045
$$

H-atom parameters constrained

$$
w R\left(F^{2}\right)=0.127
$$

$$
S=1.10
$$

$$
2004 \text { reflections }
$$

$$
271 \text { parameters }
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 9-\mathrm{C} 10$	$1.367(5)$	$\mathrm{C} 11^{\prime}-\mathrm{C} 12^{\prime}$	$1.198(5)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.197(4)$		
$\mathrm{C} 1-\mathrm{C} 1 A-\mathrm{C} 9$	$131.5(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11^{\prime}$	$123.3(3)$
$\mathrm{C} 4-\mathrm{C} 4 A-\mathrm{C} 5 A$	$130.4(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$122.8(3)$
$\mathrm{C} 5-\mathrm{C} 5 A-\mathrm{C} 4 A$	$130.4(3)$	$\mathrm{C} 11^{\prime}-\mathrm{C} 10-\mathrm{C} 11$	$113.9(3)$
$\mathrm{C} 8-\mathrm{C} 8 A-\mathrm{C} 9$	$131.2(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$174.6(4)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8 A$	$127.7(3)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$175.8(4)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 1 A$	$126.9(3)$	$\mathrm{C} 12^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C} 10$	$175.8(4)$
$\mathrm{C} 8 A-\mathrm{C} 9-\mathrm{C} 1 A$	$105.3(3)$	$\mathrm{C}_{1} 11^{\prime}-\mathrm{C} 12^{\prime}-\mathrm{C} 13^{\prime}$	$175.1(4)$
$\mathrm{C} 8 A-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11^{\prime}$	$177.9(4)$	$\mathrm{C} 8 A-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$2.0(6)$
$\mathrm{C} 1 A-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C}_{1}^{\prime}$	$-0.4(6)$	$\mathrm{C} 1 A-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-176.3(4)$

H atoms were included using a riding model, starting from calculated positions, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering, Friedel opposite reflections were not measured, and the Flack (1983) parameter is therefore meaningless. To improve stability of refinement in view of the moderate data-parameter ratio, displacement parameters were subject to similarity and rigid-bond restraints.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank Mr A. Weinkauf for technical assistance.

References

Berger, H. (2005). PhD thesis, Technical University of Braunschweig, Germany.
Eshdat, L., Berger, H., Hopf, H. \& Rabinovitz, M. (2002). J. Am. Chem. Soc. 124, 3822-3823.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jones, P. G., Berger, H., Bubenitschek, P. \& Hopf, H. (2004). Acta Cryst. E60, o490-o491.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.

